Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.287
Filter
1.
Mol Biol Rep ; 51(1): 543, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642191

ABSTRACT

Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.


Subject(s)
Copper , Metals, Heavy , Copper/metabolism , Silicon/pharmacology , Silicon/metabolism , Metals, Heavy/metabolism , Antioxidants/metabolism , Plants/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Dietary Supplements
2.
PLoS One ; 19(4): e0297844, 2024.
Article in English | MEDLINE | ID: mdl-38578758

ABSTRACT

The present study aims to investigate the influence of zeolite usage and stocking densities on various parameters, including ammonia removal from water, accumulation of heavy metals in fish organs, water quality, growth performance, feed efficiency, muscle composition, as well as hematological and biochemical parameters in European seabass (Dicentrarchus labrax) over a 90-day duration. A total of 2400 D. labrax with an initial weight of 9.83 ± 2.02 g and initial length of 9.37 ± 0.32 cm were distributed among 24 tanks. The research involved six distinct treatment groups, with two different zeolite levels (0 and 15 ppt) and three stocking density levels (50, 100, and 150 fish/m3), each replicated four times. The results of the research demonstrate a statistically significant improvement (p < 0.05) in water quality measures with the introduction of zeolite. The successful implementation of this amendment mitigated the adverse effects of fish density on water quality parameters. Higher stocking density negatively impacted European sea bass growth, feed utilization, and hemato-biochemical indicators. Zeolite use effectively alleviated these adverse effects, particularly on performance, feed utilization, hematological, and biochemical parameters. The study's results indicate that the utilization of zeolite has shown to be efficacious in mitigating the accumulation of heavy metals in both water and fish organs, while concurrently augmenting fish attributes. However, the increase in density led to a significant decrease in the accumulation of heavy metals in both water and fish organs. The present study highlights the capacity of natural zeolites to mitigate the negative consequences associated with water quality concerns. The efficiency of these zeolites in limiting the accessibility of heavy metals in polluted water is shown, hence minimizing their accumulation in fish organs. In addition, the improvement of fish performance has the capacity to have a beneficial influence on both the well-being and efficiency of fish in aquaculture. Additional research is essential to fully understand the complex molecular pathways involved in utilizing natural zeolite under different fish densities.


Subject(s)
Bass , Metals, Heavy , Zeolites , Animals , Bass/physiology , Ammonia/metabolism , Metals, Heavy/metabolism , Muscles/metabolism
3.
BMC Biotechnol ; 24(1): 15, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521922

ABSTRACT

BACKGROUND: Removal of heavy metals from water and soil is a pressing challenge in environmental engineering, and biosorption by microorganisms is considered as one of the most cost-effective methods. In this study, the metal-binding proteins MerR and ChrB derived from Cupriavidus metallidurans were separately expressed in Escherichia coli BL21 to construct adsorption strains. To improve the adsorption performance, surface display and codon optimization were carried out. RESULTS: In this study, we constructed 24 adsorption engineering strains for Hg2+ and Cr6+, utilizing different strategies. Among these engineering strains, the M'-002 and B-008 had the strongest heavy metal ion absorption ability. The M'-002 used the flexible linker and INPN to display the merRopt at the surface of the E. coli BL21, whose maximal adsorption capacity reached 658.40 µmol/g cell dry weight under concentrations of 300 µM Hg2+. And the B-008 overexpressed the chrB in the intracellular, its maximal capacity was 46.84 µmol/g cell dry weight under concentrations 500 µM Cr6+. While in the case of mixed ions solution (including Pb2+, Cd2+, Cr6+ and Hg2+), the total amount of ions adsorbed by M'-002 and B-008 showed an increase of up to 1.14- and 4.09-folds, compared to the capacities in the single ion solution. CONCLUSION: The construction and optimization of heavy metal adsorption strains were carried out in this work. A comparison of the adsorption behavior between single bacteria and mixed bacteria systems was investigated in both a single ion and a mixed ion environment. The Hg2+ absorption capacity is reached the highest reported to date with the engineered strain M'-002, which displayed the merRopt at the surface of chassis cell, indicating the strain's potential for its application in practical environments.


Subject(s)
Mercury , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Carrier Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Ions/metabolism , Mercury/metabolism , Metals, Heavy/metabolism , Water Pollutants, Chemical/metabolism
4.
Sci Rep ; 14(1): 6176, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486015

ABSTRACT

Arsenic (As) is a heavy metal that is toxic to both plants and animals. Silicon nanoparticles (SiNPs) can alleviate the detrimental effects of heavy metals on plants, but the underlying mechanisms remain unclear. The study aims to synthesize SiNPs and reveal how they promote plant health in Arsenic-polluted soil. 0 and 100% v/v SiNPs were applied to soil, and Arsenic 0 and 3.2 g/ml were applied twice. Maize growth was monitored until maturity. Small, irregular, spherical, smooth, and non-agglomerated SiNPs with a peak absorbance of 400 nm were synthesized from Pycreus polystachyos. The SiNPs (100%) assisted in the development of a deep, prolific root structure that aided hydraulic conductance and gave mechanical support to the maize plant under As stress. Thus, there was a 40-50% increase in growth, tripled yield weights, and accelerated flowering, fruiting, and senescence. SiNPs caused immobilization (As(III)=SiNPs) of As in the soil and induced root exudates Phytochelatins (PCs) (desGly-PC2 and Oxidized Glutathione) which may lead to formation of SiNPs=As(III)-PCs complexes and sequestration of As in the plant biomass. Moreover, SiNPs may alleviate Arsenic stress by serving as co-enzymes that activate the antioxidant-defensive mechanisms of the shoot and root. Thus, above 70%, most reactive ROS (OH) were scavenged, which was evident in the reduced MDA content that strengthened the plasma membrane to support selective ion absorption of SiNPs in place of Arsenic. We conclude that SiNPs can alleviate As stress through sequestration with PCs, improve root hydraulic conductance, antioxidant activity, and membrane stability in maize plants, and could be a potential tool to promote heavy metal stress resilience in the field.


Subject(s)
Arsenic , Metals, Heavy , Nanoparticles , Antioxidants/metabolism , Arsenic/metabolism , Metals, Heavy/metabolism , Nanoparticles/chemistry , Phytochelatins/metabolism , Plants/metabolism , Silicon/pharmacology , Soil , Zea mays/metabolism
5.
J Hazard Mater ; 469: 133993, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38461661

ABSTRACT

The presence of organic-complexed copper and zinc in anaerobic digestate effluent (ADE) poses persistent ecological toxicity. This study investigated the detoxification performance and biotic responses of indigenous bacteria against ethylene diamine tetraacetic acid (EDTA)-complexed Cu(II) and Zn(II). Heavy metals (HMs) stress induced reactive oxygen species (ROS) generation and enhanced extracellular polymeric substances (EPS) secretion. At a Cu(II) influent concentration of 20.0 mg·L-1, indigenous bacteria removed 88.2% of Cu(II) within nine days. The majority of copper and zinc sequestered by bacteria were stored in the cell envelope, with over 50% of copper and 60% of zinc being immobilized. Transmission electron microscopy mapping (TEM-mapping) revealed significant mineralization of copper and zinc on the cell wall. Proteins abundant in EPS, alongside humic acid-like substances, effectively adsorbed HMs. Indigenous bacteria exhibited the capacity to reduce cupric to the cuprous state and cupric is preferentially reduced to cuprous before reaching reducing capacity saturation. Sulfur precipitation emerges as a crucial pathway for Zn(II) removal. Metagenomic analysis indicated that indigenous bacteria upregulated genes related to HMs homeostasis, efflux, and DNA repair, enhancing its resistance to high concentrations HMs. This study provided theoretical guidance for employing bacterial consortia to eliminate HMs in complex aquatic environments.


Subject(s)
Copper , Metals, Heavy , Copper/toxicity , Copper/metabolism , Zinc/toxicity , Zinc/metabolism , Anaerobiosis , Metals, Heavy/metabolism , Bacteria/genetics , Bacteria/metabolism , Organic Chemicals/metabolism
6.
J Hazard Mater ; 469: 133951, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492385

ABSTRACT

Unlike terrestrial angiosperm plants, the freshwater aquatic angiosperm duckweed (Spirodela polyrhiza) grows directly in water and has distinct responses to heavy-metal stress. Plantlets accumulate metabolites, including lipids and carbohydrates, under heavy-metal stress, but how they balance metabolite levels is unclear, and the gene networks that mediate heavy-metal stress responses remain unknown. Here, we show that heavy-metal stress induced by flue gas desulfurization (FGD) wastewater reduces chlorophyll contents, inhibits growth, reduces membrane lipid biosynthesis, and stimulates membrane lipid degradation in S. polyrhiza, leading to triacylglycerol and carbohydrate accumulation. In FGD wastewater-treated plantlets, the degraded products of monogalactosyldiacylglycerol, primarily polyunsaturated fatty acids (18:3), were incorporated into triacylglycerols. Genes involved in early fatty acid biosynthesis, ß-oxidation, and lipid degradation were upregulated while genes involved in cuticular wax biosynthesis were downregulated by treatment. The transcription factor gene WRINKLED3 (SpWRI3) was upregulated in FGD wastewater-treated plantlets, and its ectopic expression increased tolerance to FGD wastewater in transgenic Arabidopsis (Arabidopsis thaliana). Transgenic Arabidopsis plants showed enhanced glutathione and lower malondialdehyde contents under stress, suggesting that SpWRI3 functions in S. polyrhiza tolerance of FGD wastewater-induced heavy-metal stress. These results provide a basis for improving heavy metal-stress tolerance in plants for industrial applications.


Subject(s)
Arabidopsis , Araceae , Metals, Heavy , Wastewater , Arabidopsis/genetics , Lipidomics , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Plants, Genetically Modified , Gene Expression Profiling , Araceae/metabolism , Membrane Lipids/metabolism
7.
J Hazard Mater ; 469: 134049, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38522207

ABSTRACT

A newly isolated ureolytic bacteria, Brucella intermedia TSBOI, exhibited microbially induced calcite precipitation (MICP) which is a promising technique for the remediation of heavy metals in polluted environments. Brucella intermedia TSBOI achieved 90-100% removal of 1 mmol/L Cu2+/Pb2+/Zn2+ within 72 h. A distinctive feature lies in B. intermedia TSBOI's capacity for the transport and hydrolysis of urea, considered to be critical for its strong urease activity. This study explored the mechanisms of this capacity at the genetic, molecular and protein levels through complete genome sequencing, molecular docking and enzymatic reaction kinetics. The results revealed that, for urea hydrolysis, B. intermedia TSBOI exhibited a comprehensive urease gene cluster, with the key gene ureC demonstrating an absolute expression level approximating to 4 × 104 copies/RNA ng under optimal conditions. Results also confirmed the strong spontaneous, energy-independent binding ability of it's urease to urea, with the lowest Gibbs free energy binding site linking to the three amino acids, alanine, asparagine and serine. The urea transport gene yut presented and expressed, with the absolute expression enhanced in response to increasing urea concentrations. The significant positive correlation between ureC/yut expression levels and urease activity provided a theoretical basis for B. intermedia TSBOI's heavy metal bioremediation potential. ENVIRONMENTAL IMPLICATION: Heavy metals (Cu, Pb and Zn) were studied in this study. Heavy metals are hazardous due to their toxicity, persistence, and ability to bioaccumulate in living organisms. They can cause severe health issues, harm ecosystems, and contaminate air, water, and soil. A novel ureolytic bacteria, Brucella intermedia TSBOI, exhibited microbially induced carbonate precipitation capability was isolated which removed 90-100% of 1 mmol/L Cu2+/Pb2+/Zn2+ within 72 h. Its advantages in urea hydrolysis and transport facilitate the remediation of actual heavy metal contaminated environments.


Subject(s)
Ecosystem , Metals, Heavy , Urease/metabolism , Biomineralization , Hydrolysis , Lead/metabolism , Molecular Docking Simulation , Metals, Heavy/metabolism , Calcium Carbonate/chemistry , Bacteria/metabolism , Soil/chemistry , Urea/metabolism
8.
Environ Pollut ; 347: 123703, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38442822

ABSTRACT

Plant litter decomposition is a natural pathway of heavy metal cycling in soil ecosystems, but the dynamics of heavy metal release during litter decomposition are relatively poorly understood. The purpose of this study was to investigate the effects of species, soil fauna and soil Cd addition on litter decomposition and Cd release dynamics. Therefore, we selected two plants, Solanum nigrum and S. lycopersicum with large differences in Cd accumulation capacity. First, they were enriched with Cd during the growing period and leaf litter was harvested after 6 months of pretreatment. Then, the decomposition of leaf litter was conducted with or without soil Cd and Eisenia fetida through lab pot tests. Our results showed that leaf litter Cd led to a significant decrease in litter decomposition rate (K value), with a maximum decrease of 32.1% in S. nigrum and 30.1% in S. lycopersicum. We observed that the presence of E. fetida significantly increased K value, but the effect was similar in the +leaf Cd treatment and the -leaf Cd treatment, both for S. nigrum and S. lycopersicum. Interestingly, the litter Cd concentration did not decrease during decomposition, but showed an increasing trend, especially for S. nigrum in the +soil Cd treatment. Moreover, the litter Cd remains was higher in the +soil Cd treatment compared to the -soil Cd treatment for both S. nigrum and S. lycopersicum, no matter whether with or without E. fetida. This result suggests that the Cd may be transferred from soil to litter, thus increasing the litter Cd remains. Overall, our study shows that leaf litter Cd slowed down the carbon cycling in ecosystems. In addition, the release of litter Cd has a lag, and the litter has a certain adsorption capacity for soil Cd, which intensifies the harm to the ecology during litter transfer.


Subject(s)
Metals, Heavy , Soil Pollutants , Solanum lycopersicum , Solanum nigrum , Cadmium/analysis , Solanum nigrum/metabolism , Biodegradation, Environmental , Soil , Ecosystem , Soil Pollutants/analysis , Metals, Heavy/metabolism , Plant Leaves/chemistry
9.
Chemosphere ; 353: 141669, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460848

ABSTRACT

Soil contamination by heavy metals has become a serious threat to global food security. The application of silicon (Si)-based materials is a simple and economical method for producing safe crops in contaminated soil. However, the impact of silicon on the heavy-metal concentration in plant roots, which are the first line in the chain of heavy-metal entering plants and causing stress and the main site of heavy-metal deposition in plants, remains puzzling. We proposed a process-based model (adsorption-diffusion model) to explain the results of a collection of 28 experiments on alleviating toxic metal stress in plants by Si. Then we evaluated the applicability of the model in Si-mitigated trivalent chromium (Cr[III]) stress in rice, taking into account variations in experimental conditions such as Cr(III) concentration, stress duration, and Si concentration. It was found that the adsorption-diffusion model fitted the experimental data well (R2 > 0.9). We also verified the binding interaction between Si and Cr in the cell wall using SEM-EDS and XPS. In addition, we designed a simplified biomimetic device that simulated the Si in cell wall to analyze the dual-action switch of Si from increasing Cr(III) adsorption to blocking Cr(III) diffusion. We found that the adsorption of Cr(III) by Si decreased from 58% to 7% as the total amount of Cr(III) increased, and finally the diffusion blocking effect of Si dominated. This study deepens our understanding of the role of Si in mitigating toxic metal stress in plants and is instructive for the research and use of Si-based materials to improve food security.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Silicon/metabolism , Oryza/metabolism , Adsorption , Biomimetics , Metals, Heavy/metabolism , Plants/metabolism , Plant Roots/metabolism , Soil , Soil Pollutants/toxicity , Soil Pollutants/metabolism
10.
Planta ; 259(5): 103, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551683

ABSTRACT

MAIN CONCLUSION: Heavy metal pollution caused by human activities is a serious threat to the environment and human health. Plants have evolved sophisticated defence systems to deal with heavy metal stress, with proteins and enzymes serving as critical intercepting agents for heavy metal toxicity reduction. Proteomics continues to be effective in identifying markers associated with stress response and metabolic processes. This review explores the complex interactions between heavy metal pollution and plant physiology, with an emphasis on proteomic and biotechnological perspectives. Over the last century, accelerated industrialization, agriculture activities, energy production, and urbanization have established a constant need for natural resources, resulting in environmental degradation. The widespread buildup of heavy metals in ecosystems as a result of human activity is especially concerning. Although some heavy metals are required by organisms in trace amounts, high concentrations pose serious risks to the ecosystem and human health. As immobile organisms, plants are directly exposed to heavy metal contamination, prompting the development of robust defence mechanisms. Proteomics has been used to understand how plants react to heavy metal stress. The development of proteomic techniques offers promising opportunities to improve plant tolerance to toxicity from heavy metals. Additionally, there is substantial scope for phytoremediation, a sustainable method that uses plants to extract, sequester, or eliminate contaminants in the context of changes in protein expression and total protein behaviour. Changes in proteins and enzymatic activities have been highlighted to illuminate the complex effects of heavy metal pollution on plant metabolism, and how proteomic research has revealed the plant's ability to mitigate heavy metal toxicity by intercepting vital nutrients, organic substances, and/or microorganisms.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Ecosystem , Biodegradation, Environmental , Proteomics , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Plants/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Soil
11.
Pathol Res Pract ; 256: 155260, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493726

ABSTRACT

Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-ß signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-ß regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-ß signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-ß receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-ß pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-ß signalling.


Subject(s)
Arsenic , Environmental Pollutants , Lung Neoplasms , Metals, Heavy , Humans , Cadmium/analysis , Arsenic/toxicity , Arsenic/analysis , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Ecosystem , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Lung/metabolism
12.
Plant Cell Rep ; 43(4): 90, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466444

ABSTRACT

KEY MESSAGE: Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.


Subject(s)
Arsenic , Basidiomycota , Metals, Heavy , Mycorrhizae , Oryza , Humans , Phosphorus/metabolism , Oryza/metabolism , Metals, Heavy/metabolism , Mycorrhizae/metabolism , Crops, Agricultural/metabolism , Plant Roots/metabolism
13.
Plant Cell Rep ; 43(4): 103, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502356

ABSTRACT

KEY MESSAGE: Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.


Subject(s)
Lactoylglutathione Lyase , Metals, Heavy , Pyruvaldehyde/metabolism , Plants/metabolism , Lactoylglutathione Lyase/metabolism , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Plant Development , Stress, Physiological/physiology
14.
Environ Sci Pollut Res Int ; 31(15): 23077-23090, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416356

ABSTRACT

The contamination of toxic heavy metals in aquatic environments has garnered significant global attention due to its detrimental effects on marine organisms and human health. Hexavalent chromium is a typical environmental and occupational heavy metal pollutant, identified as carcinogenic heavy metal. This study aimed to assess the impact of different Cr (VI) concentrations (0.05-2.5 mg/L) on Urechis unicinctus (U. unicinctus) by investigating bioaccumulation, antioxidant defense system, expression of resistance-related genes, and histological issues. A clear concentration-effect relationship was observed in the bioaccumulation of Cr (VI) in muscle tissues of U. unicinctus. Moreover, exposure to Cr (VI) can alter the activities of lysozyme (LSZ), catalase (CAT), and superoxide dismutase (SOD) to enhance cellular defense mechanisms in U. unicinctus. Likewise, maintained the normal protein structure and functional stability by regulating protein folding. The heat shock cognitive protein (HSC70) gene showed an upward and then downward trend after Cr (VI) exposure. At 12 h, the HSC70 gene expression reached the maximum values of 4.75 and 4.61-fold in the 0.1 and 1.5 mg/L groups, respectively. The organism produced a large number of free radicals, and elevated level of metallothionein (MT) was used to scavenge free radicals and alleviate oxidative stress. Additionally, histopathological examination revealed disorganization in the midgut, atrophic changes in intestinal connective tissue, uneven distribution in respiratory tissues, and irregular shape with a significant reduction in epithelial cells within the gastric cavity. These findings can serve as a valuable reference for elucidating the toxicity mechanisms of heavy metals towards marine benthic organisms and enhancing water environment monitoring strategies.


Subject(s)
Metals, Heavy , Polychaeta , Animals , Humans , Bioaccumulation , Chromium/metabolism , Metals, Heavy/metabolism , Antioxidants/metabolism , Oxidative Stress , Polychaeta/metabolism , Free Radicals
15.
Cardiovasc Toxicol ; 24(2): 85-101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356081

ABSTRACT

Cold stress prompts an increased prevalence of cardiovascular morbidity yet the underneath machinery remains unclear. Oxidative stress and autophagy appear to contribute to cold stress-induced cardiac anomalies. Our present study evaluated the effect of heavy metal antioxidant metallothionein on cold stress (4 °C)-induced in cardiac remodeling and contractile anomalies and cell signaling involved including regulation of autophagy and mitophagy. Cold stress (3 weeks) prompted interstitial fibrosis, mitochondrial damage (mitochondrial membrane potential and TEM ultrastructure), oxidative stress (glutathione, reactive oxygen species and superoxide), lipid peroxidation, protein injury, elevated left ventricular (LV) end systolic and diastolic diameters, decreased fractional shortening, ejection fraction, Langendorff heart function, cardiomyocyte shortening, maximal velocities of shortening/relengthening, and electrically stimulated intracellular Ca2+ rise along with elongated relaxation duration and intracellular Ca2+ clearance, the responses of which were overtly attenuated or mitigated by metallothionein. Levels of apoptosis, cell death (Bax and loss of Bcl2, IL-18), and autophagy (LC3BII-to-LC3BI ratio, Atg7 and Beclin-1) were overtly upregulated with comparable p62 under cold stress. Cold stress also evoked elevated mitophagy (decreased TOM20, increased Parkin and FUNDC1 with unaltered BNIP3). Cold stress overtly dampened phosphorylation of autophagy/mitophagy inhibitory molecules Akt and mTOR, stimulated and suppressed phosphorylation of ULK1 and eNOS, respectively, in the absence of altered pan protein levels. Cold stress-evoked responses in cell death, autophagy, mitophagy and their regulatory domains were overtly attenuated or ablated by metallothionein. Suppression of autophagy and mitophagy with 3-methyladenine, bafilomycin A1, cyclosporine A, and liensinine rescued hypothermia-instigated cardiomyocyte LC3B puncta formation and mechanical anomalies. Our findings support a protective nature for metallothionein in deep hypothermia-evoked cardiac abnormalities associated with regulation of autophagy and mitophagy.


Subject(s)
Hypothermia , Metals, Heavy , Humans , Mitophagy , Cold-Shock Response , Hypothermia/metabolism , Metallothionein , Myocardial Contraction , Myocytes, Cardiac , Autophagy , Metals, Heavy/metabolism , Metals, Heavy/pharmacology
16.
BMC Plant Biol ; 24(1): 108, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347449

ABSTRACT

Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.


Subject(s)
Brassica napus , Metals, Heavy , Soil Pollutants , Antioxidants/metabolism , alpha-Tocopherol/pharmacology , alpha-Tocopherol/metabolism , Brassica napus/metabolism , Mercuric Chloride/toxicity , Mercuric Chloride/metabolism , Tocopherols/metabolism , Tocopherols/pharmacology , Metals, Heavy/metabolism , Proline/metabolism , Soil Pollutants/metabolism
17.
Sci Total Environ ; 919: 170790, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38331279

ABSTRACT

The combined pollution of lead (Pb) and polystyrene microplastics (PS-MPs) is common in aquatic environments. However, the combined neurotoxicity of these two pollutants is still poorly understood. In this study, zebrafish (Danio rerio) larvae were used to assess the combined neurotoxicity and mechanism of Pb and PS-MPs at environmentally relevant concentrations. The results showed that Pb (10 µg/L) induced abnormal behavior including significantly reduced movement distance, maximum acceleration, and average velocity (P < 0.05) along with altered expression of neurodevelopment-related genes (gap43 and α1-tubulin) (P < 0.05). PS-MPs (25 µg/L, 250 µg/L; diameter at 25 µm) co-exposure not only significantly reduced the concentration of Pb in the exposed solution (P < 0.01), but also decreased the uptake of Pb by downregulating the divalent metal transporter 1 gene (dmt1) (P < 0.01), thereby alleviating Pb-induced neurotoxicity. However, to demonstrate that PS-MPs alleviate the neurotoxicity of Pb by reducing Pb uptake, upregulation of dmt1 by addition of deferoxamine (DFO, an efficient iron chelator, 100 µM) significantly increased the Pb uptake and exacerbated neurotoxicity in zebrafish. In summary, our results demonstrated that PS-MPs alleviate Pb neurotoxicity by downregulating the mRNA level of dmt1 and decreasing the Pb uptake. This study provides a new insight into the combined neurotoxicity and underlying mechanisms of PS-MPs and Pb on zebrafish.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Polystyrenes/toxicity , Polystyrenes/metabolism , Microplastics/toxicity , Microplastics/metabolism , Plastics/toxicity , Zebrafish/physiology , Lead/toxicity , Lead/metabolism , Larva/metabolism , Metals, Heavy/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
18.
Article in English | MEDLINE | ID: mdl-38387689

ABSTRACT

Cadmium (Cd) is a highly toxic heavy metal element that might adversely affect sperm function such as the acrosome reaction (AR). Although it is widely recognized that zinc (Zn) plays a crucial role in sperm quality, the complete elucidation of how Zn ameliorates Cd-induced sperm dysfunction is still unclear. In this study, we aimed to explore the protective effects of Zn against the sperm dysfunction induced by Cd in the freshwater crab Sinopotamon henanense. The results demonstrated that Cd exposure not only impaired the sperm ultrastructure, but also caused sperm dysfunction by decreasing the AR induction rate, acrosome enzyme activity, and Ca2+ content in sperm while elevating the activity and transcription expression of key Ca2+ signaling pathway-related proteins Calmodulin (CAM) and Ca2+-ATPase. However, the administration of Zn was found to alleviate Cd-induced sperm morphological and functional disorders by increasing the activity and transcription levels of CaM and Ca2+-ATPase, thereby regulating intracellular Ca2+ homeostasis and reversing the decrease in Ca2+ contents caused by Cd. Furthermore, this study was the first to investigate the distribution of metallothionein (MT) in the AR of S. henanense, and it was found that Zn can reduce the elevated levels of MT in crabs caused by Cd, demonstrating the significance of Zn in inducing MT to participate in the AR process and in metal detoxification in S. henanense. These findings offer novel perspectives and substantiation regarding the utilization of Zn as a protective agent against Cd-induced toxicity and hold significant practical implications for mitigating Cd-induced sperm dysfunction.


Subject(s)
Brachyura , Metals, Heavy , Animals , Male , Cadmium/metabolism , Zinc/toxicity , Metallothionein/genetics , Metallothionein/metabolism , Semen/metabolism , Metals, Heavy/metabolism , Spermatozoa , Fresh Water , Adenosine Triphosphatases/metabolism
19.
J Hazard Mater ; 466: 133578, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38306837

ABSTRACT

Phytoremediation is widely considered as a cost-effective method for managing heavy metal soil pollution. Leersia hexandra Swartz shows a promising potential for the remediation of heavy metals pollution, including chromium (Cr), copper (Cu), and nickel (Ni). It is vital to understand the physiological and biochemical responses of L. hexandra to Ni stress to elucidate the mechanisms underlying Ni tolerance and accumulation. Here, we examined the metabolic and transcriptomic responses of L. hexandra exposed to 40 mg/L Ni for 24 h and 14 d. After 24-h Ni stress, gene expression of glutathione metabolic cycle (GSTF1, GSTU1 and MDAR4) and superoxide dismutase (SODCC2) was significantly increased in plant leaves. Furthermore, after 14-d Ni stress, the ascorbate peroxidase (APX7), superoxide dismutase (SODCP and SOD1), and catalase (CAT) gene expression was significantly upregulated, but that of glutathione metabolic cycle (EMB2360, GSTU1, GSTU6, GSH2, GPX6, and MDAR2) was downregulated. After 24-h Ni stress, the differentially expressed metabolites (DEMs) were mainly flavonoids (45%) and flavones (20%). However, after 14-d Ni stress, the DEMs were mainly carbohydrates and their derivatives (34%), amino acids and derivatives (15%), and organic acids and derivatives (8%). Results suggest that L. hexandra adopt distinct time-dependent antioxidant and metal detoxification strategies likely associated with intracellular reduction-oxidation balance. Novel insights into the molecular mechanisms responsible for Ni tolerance in plants are presented.


Subject(s)
Metals, Heavy , Soil Pollutants , Nickel/toxicity , Antioxidants/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Poaceae/metabolism , Glutathione/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Defense Mechanisms
20.
Environ Sci Pollut Res Int ; 31(12): 18750-18764, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38349489

ABSTRACT

Benthic microbial fuel cell (BMFC) is the most promising type of bioelectrochemical approach for producing electrons and protons from natural organic waste. In the present work, a single-chamber BMFC was used, containing sago (Cycas revoluta) waste as the organic feed for microorganisms. The local wastewater was supplemented with heavy metal ions (Pb2+, Cd2+, Cr3+, Ni2+, Co2+, Ag+, and Cu2+) and used as an inoculation source to evaluate the performance of BMFC against the toxic metal remediations. According to the experimental results, the maximum power density obtained was 42.55 mW/m2 within 25 days of the BMFC operation. The maximum remediation efficiency of the metal ion removal from the wastewater was found to be 99.30% (Ag+). The conductive pili-type bacteria species (Acinetobacter species, Leucobacter species, Bacillus species, Proteus species. and Klebsiella pneumoniae) were found in the present study during isolation and identification processes. This study's multiple parameter optimization revealed that pH 7 and room temperature is the best condition for optimal performance. Finally, this study included the mechanism, future recommendations, and concluding remarks.


Subject(s)
Bioelectric Energy Sources , Cycas , Metals, Heavy , Bioelectric Energy Sources/microbiology , Wastewater , Cycas/metabolism , Metals, Heavy/metabolism , Bacteria/metabolism , Electrodes , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...